Lecture 10 : Chain Rule

(Please review Composing Functions under Algebra/Precalculus Review on the class webpage.)
Here we apply the derivative to composite functions. We get the following rule of differentiation:
The Chain Rule : If g is a differentiable function at x and f is differentiable at $g(x)$, then the composite function $F=f \circ g$ defined by $F(x)=f(g(x))$ is differentiable at x and F^{\prime} is given by the product

$$
F^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
$$

In Leibniz notation If $y=f(u)$ and $u=g(x)$ are both differentiable functions, then

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}
$$

It is not difficult to se why this is true, if we examine the average change in the value of $F(x)$ that results from a small change in the value of x :

$$
\frac{F(x+h)-F(x)}{h}=\frac{f(g(x+h))-f(g(x))}{h}=\frac{f(g(x+h))-f(g(x))}{g(x+h)-g(x)} \cdot \frac{g(x+h)-g(x)}{h}
$$

or if we let $u=g(x)$ and $y=F(x)=f(u)$, then

$$
\frac{\Delta y}{\Delta x}=\frac{\Delta y}{\Delta u} \cdot \frac{\Delta u}{\Delta x}
$$

if $g(x+h)-g(x)=\Delta u \neq 0$. When we take the limit as $h \rightarrow 0$ or $\Delta x \rightarrow 0$, we get

$$
F^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
$$

or

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}
$$

Example Find the derivative of $F(x)=\sin (2 x+1)$.
Step 1: Write $F(x)$ as $F(x)=f(g(x))$ or $y=F(x)=f(u)$, where $u=g(x)$.

Step 2: working from the outside in, we get
$F^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)=$
or using u, we get
$F^{\prime}(x)=\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}$.

Example Let $g(x)=\sqrt{\left(x^{3}+x^{2}+1\right)^{3}}$, Find $h^{\prime}(x)$.

There is a general pattern with differentiating a power of a function that we can single out as:
The Chain Rule and Power Rule combined: If n is any real number and $u=g(x)$ is differentiable, then

$$
\frac{d}{d x}\left(u^{n}\right)=n u^{n-1} \frac{d u}{d x}
$$

or

$$
\frac{d}{d x}\left((g(x))^{n}\right)=n(g(x))^{n-1} g^{\prime}(x)
$$

Example Differentiate the following function:

$$
f_{1}(x)=\sin ^{100} x
$$

We can combine the chain rule with the other rules of differentiation:
Example Differentiate $h(x)=(x+1)^{2} \sin x$.

Example Find the derivative of the function

$$
k(x)=\frac{\left(x^{3}+1\right)^{100}}{x^{2}+2 x+5} .
$$

Sometimes we have to use the chain rule more than once. The following can be proven by repeatedly applying the above result on the chain rule :

Expanded Chain Rule If h is differentiable at x, g is differentiable at $h(x)$ and f is at $g(h(x))$, then the composite function $G(x)=f(g(h(x)))$ is differentiable at x and

$$
G^{\prime}(x)=f^{\prime}(g(h(x))) g^{\prime}(h(x)) h^{\prime}(x) .
$$

Alternatively, letting $v=h(x), u=g(v)=g(h(x))$ and $y=G(x)=f(u)$, we get

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d v} \cdot \frac{d v}{d x}
$$

Example Let $F(x)=\cos \left(\sin \left(x^{2}+\pi\right)\right)$, Find $F^{\prime}(x)$.

What is the equation of the tangent line to the graph of $f(x)$ at $x=0$.

More Examples

Example(Old Exam Question Fall 2007) Find the derivative of

$$
h(x)=x^{2} \cos \left(\sqrt{x^{3}-1}+2\right) .
$$

Example Find the derivative of

$$
\begin{gathered}
F(x)=\frac{1}{\sqrt{x^{2}+x+1}} \\
F(x)=\frac{1}{\sqrt{x^{2}+x+1}}=\left(x^{2}+x+1\right)^{-1 / 2}
\end{gathered}
$$

By the chain rule,

$$
F^{\prime}(x)=\frac{-1}{2}\left(x^{2}+x+1\right)^{-3 / 2}(2 x+1)=\frac{-(2 x+1)}{2\left(x^{2}+x+1\right)^{3 / 2}} .
$$

Example Find the derivative of $L(x)=\sqrt{\frac{x-1}{x+2}}$.
Here we use the chain rule followed by the quotient rule. We have

$$
L(x)=\sqrt{\frac{x-1}{x+2}}=\left(\frac{x-1}{x+2}\right)^{1 / 2}
$$

Using the chain rule, we get

$$
L^{\prime}(x)=\frac{1}{2}\left(\frac{x-1}{x+2}\right)^{-1 / 2} \frac{d}{d x}\left(\frac{x-1}{x+2}\right)
$$

Using the quotient rule for the derivative on the right, we get

$$
L^{\prime}(x)=\frac{1}{2}\left(\frac{x-1}{x+2}\right)^{-1 / 2}\left[\frac{(x+2)-(x-1)}{(x+2)^{2}}\right]=\frac{1}{2}\left(\frac{x-1}{x+2}\right)^{-1 / 2}\left[\frac{3}{(x+2)^{2}}\right]
$$

Example

$$
f(x)=\sqrt{\cos ^{2}(2 x)}
$$

Find $f^{\prime}(0)$. (Note that this is an interesting function, in fact $f(x)=|\cos (2 x)|$ which you can graph by sketching the graph of $\cos (2 x)$ and then flipping the negative parts over the x -axis. Note that the graph has many sharp points, but is smooth at $x=0$.)

Using the chain rule with the chain
$y=f(x)=\sqrt{\cos ^{2}(2 x)}=\sqrt{u}, \quad u=\cos ^{2}(2 x)=(v)^{2}, \quad v=\cos (2 x)=\cos (w), \quad w=2 x$, we get

$$
\begin{aligned}
& f^{\prime}(x)=\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d v} \cdot \frac{d v}{d w} \cdot \frac{d w}{d x}=\frac{1}{2} u^{-1 / 2} \cdot 2 v \cdot[-\sin (w)] \cdot 2= \\
& \frac{1}{2 \sqrt{\cos ^{2}(2 x)}} \cdot 2 \cos (2 x) \cdot[-\sin (2 x)] \cdot 2=\frac{-2 \cos (2 x) \sin (2 x)}{\sqrt{\cos ^{2}(2 x)}}
\end{aligned}
$$

